NEW SYNTHETIC ROUTES TO $\beta-HYDROXYSELENIDES$ AND $\beta-AZIDOSELENIDES.$

J.N. Denis ,J. Vicens and A. Krief^{1*}

Department of Chemistry , Facultés Universitaires N.D. de la Paix, 61, rue de Bruxelles, B-5000 Namur (Belgium).

 β -hydroxy and yet unknown β -azidoselenides are prepared from β -bromophenyl and yet unknown β -bromomethylselenides. First evidence of selective reaction of selenenylbromides with the less substituted double bonds of polyolefins, is disclosed.

Addition of pseudohalides containing a selenyl moiety² to olefins has attracted wide interest in organic synthesis and allowed the synthesis of selenides substituted in the β positic by an halogen atom^{3,4}, an alkoxy^{3c,5}, an acetyl^{3a,de,6}, an hydroxyl⁷ or an amino group ^{8,9}.

Some of these derivatives were prepared from β -halogenoselenides via a substitution reaction which take advantage of neighbouring group participation of the selenyl moiety. As expected the reactivity of β -halogenoselenides should be modulated by the nature of the other group (R) attached to the selenium atom and β -bromomethylselenides are expected to be more reactive than phenylseleno analogues although the nucleophilic attack also can occur on the selenium atom leading back to the olefin¹⁰.

This letter presents our preliminary observations concerning the addition of phenyl $\underline{2}'$ and methyl $\underline{2}''$ selenenyl bromides to olefins, the transformation of the resulting adduct $\underline{4}$ to β -hydroxyselenides $\underline{5}$ and β -azidoselenides $\underline{6}$ which are further transformed to selenium free derivatives.

Methylselenenyl bromide was readily prepared (0.1 hr) by mixing together at -10° , bromine in CH_2Cl_2 (1 eq mol) to dimethyl diselenide (1 eq) in the same solvent to get a 1M final black red solution which discloses a major peak at 3.16 ppm by NMR (TMS as standard). This solution was further used with olefins.

Phenylselenenyl bromide was prepared as already described³ and reacted with olefins in CH_2Cl_2 or in CH_2CN ^{3f}.

Whatever the reagent used, the reaction occurs readily at -10° with terminal olefins such as 1-octene or 1-dodecene and with cyclohexene producing the corresponding β bromomethylselenides¹¹ <u>4</u>" and known β bromophenylselenides³ <u>4</u>' in high yield (\sim 90% of crude product) but is more difficult with straight chain olefins especially when methylselenenyl bromide is used. Thus 2E, 2Z and 4Z octenes lead quantitatively to β -bromophenylselenides whereas methylselenoanalogues are obtained in \sim 40% yield and 9E octadecene is reluctant to the addition of both reagents.

Related to these observations is the finding that both reagents add selectively (100%) and quantitatively on the less substituted double bond of polyolefins^{12,13} as examplified in Scheme II.

 $CH_{3}(CH_{2})_{6}-CH=CH-(CH_{2})_{8}CH=CH_{2}\xrightarrow{RSeBr}{90\%}CH_{3}(CH_{2})_{6}-CH=CH-(CH_{2})_{8}\xrightarrow{H}{CH-CH}R:CH_{3} \text{ or } C_{6}H_{5}$

 $(CH_3)_2^{C} = CH_2(CH_2)_2^{-CH_3} \xrightarrow[]{H_3} (CH_2^{-CH_2} \xrightarrow[]{RSeBr}]{H_3} (CH_3)_2^{C} = CH_2(CH_2)_2^{-CH_3} \xrightarrow[]{CH_3} (CH_2^{-CH_2} \xrightarrow[]{CH_3} (CH_3^{-CH_2} \xrightarrow[]{CH_3} (CH_3^{-CH_3} (CH_3^{-CH_3$

This selectivity, which is the reverse of the one observed when polyolefins are reacted with electrophilic reagents, should be very important in organic synthesis especially if the β bromoselenide formed can be further transformed.

The second part of this report discloses our preliminary results directed toward this objective using saturated β -bromoselenides $\underline{4}$ as models. We found that they can be transformed (Scheme III) in high yield to β -hydroxyselenides $\underline{5}$ and as yet unknown β -azidoselenides $\underline{6}$ when reacted with water (method A) or sodium azide (method B) in trifluoroethanol . This solvent is the best among those used and moreover allows the selective (>99%) formation of 2-hydroxyselenides $\underline{5}$ from 2-bromoselenides $\underline{4}$ (scheme III). Unfortunately such selectivity is not observed in β -azidoselenides $\underline{6}$.

Other solvents such as DMF or HMPT are much less valuable. The reactions are much slower, especially with long chain derivative and lead to a mixture of regioisomers in cases of 2-bromoselenides [DMF/H₂O(method C); DMF/LiN₃ (method D)].

During the course of this research, we interestingly found that β -bromophenylselenides are transformed to β -hydroxyselenides when simply stirred with silicagel (Merck 7747) in CH₂Cl₂ (method E).

R	<u>4</u>				Overall yield in 5(5a %)					Overall yield in <u>6 (6a</u> %)	
K	^K I	^R 2	к3	^R 4	method	A	method	С	method E	method B	method D
СНЗ	с ₆ н ₁₃	Н	н	н	-		63(69)	74hr	15(-)	65 ⁺ (50)10hr	-
C6H5	C ₆ H ₁₃	Н	H	н	74(99)	2hr	68(91)	72hr	72(-)18hr	76 ⁺ 6hr	-
СН3	C ₁₀ H ₂₁	Н	H	н	74(99)	4hr	15(-)		-	66(57)3.5hr	70(40) 5hr
C6H5	C10H21	H	H	н	-		-		77 16hr	92(43) 10hr	_
СНЗ	$CH_2(CH_2)_2$	^{СН} 2	Н	н	80	3hr	78	5hr	-	80 1.9hr	80 3hr
C6 ^H 5	$CH_2(CH_2)_2$	^{СН} 2	H	н	-		70	l7hr	70 15hr	84 3hr	72 lhr
с ₆ н ₅	^с 5 ^н 11	Н	н	сн3*	-		90	3hr	-	77 ⁺ 16hr	_
^С 6 ^Н 5	с ₅ н ₁₁	сн ₃	н	HXX	-		75	17hr	-	60 ⁺ 18hr	
x o	* obtained from 2E octene ** obtained from 2Z octene + performed in methanol										

Finally, we present in the last section examples of selective activation on some of the above products. Thus, 1-azido-2-phenylseleno-cyclohexane is oxidized to the corresponding selenoxide with ozone in CH_2Cl_2 and further decomposed by heating at reflux of the solvent in the presence of triethyl amine, to a mixture of 3-azido (60%) and unknown ¹⁴ 1-azidocyclohexene (40%) which are obtained in 50% overall yield and which are quantitatively separated. 1-Azido 2-phenylseleno and methylseleno cyclohexane are quantatively reduced to the corresponding

amine when reacted with lithium aluminium hydride in ether (the methylseleno) derivative is unstable).

On the other hand β -hydroxyselenides are transformed to the corresponding epoxides ¹⁵ and when 2E and 2Z octenes are subjected to the reactions disclosed in the following scheme, trans and cis epoxides are stereoselectively (>95%) obtained. These results suggest that the substitution reaction on β -bromoselenides occurs, at least for these cases, with retention of configuration.

Work is actually in progress to perform substitution reaction with other nucleophiles, to transform β -azidoselenides selectively to the corresponding amines or aziridines and to allow the selective formation of epoxides and aziridines on the less substituted carbon carbon double bond of a polyolefin.

References

1)	Presented first at the 4th Symposium on heterocyclic chemistry held at Louvain-la-Neuve (Belgium) 12 July 1978.
2)	 a. Organic selenium compounds their Chemistry and Biology. D.L.Klayman and W.H.H. Günter. J. Wiley ed(1973) ISBN-0-471-490-32-6. b. K.B. Sharpless, B.M. Gordon, R.F. Lauer, D.W. Patrick, S.P. Singer, M.W. Young, Chem. Scr. <u>8A</u>, 9 (1975). c. D.L.J. Clive, Tetrahedron Report Nr 50. Tetrahedron <u>34</u>, 1049 (1978).
3)	 a. D.D. Lawson and N. Kharasch. J. Org. Chem. 24, 857 (1959). b. D.L.J. Clive. J.C.S. Chem. Comm. 100 (1974). c. H.J. Reich. J. Org. Chem. 39, 428 (1974). d. K.B. Sharpless and R.F. Lauer. J. Org. Chem. 39, 429 (1974). e. K.C. Nicolaou and Z. Lysenko. J. Amer. Chem. Soc. 99, 3185 (1977). f. S. Raucher. Tet. Lett. 3909 (1977); J. Org. Chem. 42, 2950 (1977). g. T. Takahashi, H. Nagashima and J. Tsuji. Tet. Lett. 799 (1978).
4)	 a. S.P.Mc Manus and D.H. Lam. J. Org. Chem. <u>43</u>, 650 (1978). b. D.G. Garratt. Tet Lett. 1915 (1978). c. E.G. Kataer, T.G. Mannafor, E.A. Bernikov and O.A. Komarosckaya. Zh Org.Khim <u>9</u>,1998(1973). d. M. Oki, W. Nakanishi and M. Fukunaga. Chem. Lett. 1277 (1975). e. D.G. Garratt and G.H. Schmid. J. Org. Chem. <u>42</u>, 1776 (1977).
5)	A. Toshimitsu, S. Uemura and M. Okano. J.C.S. Chem. Comm. 166 (1977).
6)	a. W.Jenny,Helv.Chim. Acta. <u>36</u> , 1278 (1953). b. G. Hölzle and W. Jenny. Helv. Chim. Acta <u>41</u> , 331, 593 (1958).
7)	 a. H.J.Reich and J.E. Trend. J. Org. Chem. 41, 2503 (1976). b. T. Hori and K.B. Sharpless, ibid, 43, 1689 (1978) c. H.J. Reich, S. Wollowitz, J.E. Trend, F. Chow and D.F. Wendelborn. ibid. 43, 1697 (1978) d. D. Labar, A. Krief and L. Hevesi. Tet. Lett. 3967 (1978).
8)	a. H.J. Reich and J.M. Renga. J. Org. Chem. 40, 3313 (1975). b. H.J. Reich, J.M. Renga and J.E. Trend. Tet. Lett. 2217 (1976).
9)	D.H.R. Barton, M.R. Britten-Kelly and D. Ferreira. J.C.S. Perkin I. 1090 (1978).
10)	J. Lucchetti and A. Krief. Tet. Lett. 2693 (1978) and references cited therein.
11)	When the reaction is performed in CH_2Cl_2 with terminal olefins the thermodynamic adduct 2-bromo methylselenide is exclusively formed (NMR) whereas both regioisomers are formed as described with phenylseleno analogues
12)	Cyclic polyenes were described to cyclize when reacted with C ₆ H ₅ SeCl in acetic acid. D.L.J. Clive, G. Chittattu and C.K. Wong. J.C.S. Chem. Comm. 441 (1978).
13)	It is known that 4-chlorobenzene sulfenyl chloride exchange between cyclooctene and terminal olefins. G.H. Schmid and P.H. Fitzgerald. J. Amer. Chem. Soc. <u>93</u> , 2547 (1971). To our knowledge, there is not report when the two different C=C bonds are part of the same molecule. We are investigating such cases.
14)	A. Hassner and F.W. Fowler. J. Org. Chem. <u>33</u> , 2686 (1968).

- 15) a. D. Van Ende, W. Dumont and A. Krief, Angew. Chem. Int. Ed., 700 (1975) b. D. Labar. Results to be published.
- 16) The authors acknowledge Wellcome Company (England) and Namur Faculty for a fellowship to J.V and Roussel Uclaf (France) for a fellowship to J.N.D.

(Received in UK 22 March 1979)